Exercise 35

An integral equation is an equation that contains an unknown function $y(x)$ and an integral that involves $y(x)$. Solve the given integral equation. [Hint: Use an initial condition obtained from the integral equation.]

$$
y(x)=4+\int_{0}^{x} 2 t \sqrt{y(t)} d t
$$

Solution

Right away we see that if we plug in $x=0$ to the integral equation, we get

$$
\begin{aligned}
y(0) & =4+\int_{0}^{0} 2 t \sqrt{y(t)} d t \\
& =4+0 \\
& =4,
\end{aligned}
$$

so the initial condition is $y(0)=4$. In order to solve for $y(x)$ by the method introduced in this section, differentiate both sides of the integral equation with respect to x.

$$
\frac{d}{d x} y(x)=\underbrace{\frac{d}{d x}}_{=0} 4+\frac{d}{d x} \int_{0}^{x} 2 t \sqrt{y(t)} d t
$$

By the fundamental theorem of calculus,

$$
\frac{d}{d x} \int_{0}^{x} 2 t \sqrt{y(t)} d t=2 x \sqrt{y(x)}
$$

so the differential equation we need to solve is the following.

$$
\frac{d y}{d x}=2 x \sqrt{y}
$$

This is a separable equation, which means we can solve for $y(x)$ by bringing all terms with y to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
d y & =2 x \sqrt{y} d x \\
\frac{d y}{\sqrt{y}} & =2 x d x \\
\int \frac{d y}{\sqrt{y}} & =\int 2 x d x \\
\frac{1}{\frac{1}{2}} \sqrt{y} & =x^{2}+C \\
\sqrt{y} & =\frac{1}{2} x^{2}+\frac{1}{2} C
\end{aligned}
$$

Let $C_{1}=\frac{1}{2} C$. Then

$$
y(x)=\left(\frac{1}{2} x^{2}+C_{1}\right)^{2}
$$

Now we use the initial condition, $y(0)=4$ to determine C_{1}.

$$
\begin{aligned}
y(0)=\left(C_{1}\right)^{2} & =4 \\
C_{1} & = \pm 2
\end{aligned}
$$

If we plug in $C_{1}=-2$ into $y(x)$, it doesn't satisfy the integral equation, so we have to use $C_{1}=2$. Therefore,

$$
y(x)=\left(\frac{1}{2} x^{2}+2\right)^{2} .
$$

